Interplay between discretization and algebraic compu- tation in adaptive numerical solution of elliptic PDE problems

نویسندگان

  • Mario Arioli
  • Jörg Liesen
  • Agnieszka Międlar
  • Zdeněk Strakoš
چکیده

The Adaptive Finite Element Method (AFEM) for approximating solutions of PDE boundary value and eigenvalue problems is a numerical scheme that automatically and iteratively adapts the finite element space until a sufficiently accurate approximate solution is found. The adaptation process is based on a posteriori error estimators, and at each step of this process an algebraic problem (linear or nonlinear algebraic system or eigenvalue problem) has to be solved. In practical computations the solution of the algebraic problem cannot be obtained exactly. As a consequence, the algebraic error should be incorporated in the context of the AFEM and its a posteriori error estimators. The goal of this paper is to survey some existing approaches in the AFEM context that consider the interplay between the finite element discretization and the algebraic computation. We believe that a better understanding of this interplay is of great importance for the future development in the area of numerically solving large-scale real-world motivated problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel algebraic multilevel Schwarz preconditioners for a class of elliptic PDE systems

Algebraic multilevel preconditioners for algebraic problems arising from the discretization of a class of systems of coupled elliptic partial differential equations (PDEs) are presented. These preconditioners are based on modifications of Schwarz methods and of the smoothed aggregation technique, where the coarsening strategy and the restriction and prolongation operators are defined using a po...

متن کامل

Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations

We consider a new adaptive finite element (AFEM) algorithm for self-adjoint elliptic PDE eigenvalue problems. In contrast to other approaches we incorporate the inexact solutions of the resulting finite dimensional algebraic eigenvalue problems into the adaptation process. In this way we can balance the costs of the adaptive refinement of the mesh with the costs for the iterative eigenvalue met...

متن کامل

ADI Methods for Cubic Spline Collocation Discretizations of Elliptic PDE

This paper presents the formulation, the analysis and the implementation of Alternating Direction Implicit (ADI) methods for solving the linear system of algebraic equations that arise from the discretization of multidimensional linear elliptic Partial Diierential Equations (PDEs). The theoretical analysis is carried out for a board class of PDE problems. Numerical experiments connrm the theore...

متن کامل

Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry

The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...

متن کامل

Operator preconditioning with efficient applications for nonlinear elliptic problems

Nonlinear elliptic partial differential equations form a class of equations that is widespread in modelling various nonlinear phenomena in science, hence their numerical solution has continuously been a subject of extensive research. Such problems also arise from timedependent nonlinear PDE problems, either on the time levels after the time discretization or as describing steady-states of the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013